منابع مشابه
Popularity at Minimum Cost
We consider an extension of the popular matching problem in this paper. The input to the popular matching problem is a bipartite graph G = (A ∪ B, E), where A is a set of people, B is a set of items, and each person a ∈ A ranks a subset of items in an order of preference, with ties allowed. The popular matching problem seeks to compute a matching M∗ between people and items such that there is n...
متن کاملMinimum sum edge colorings of multicycles
In the minimum sum edge coloring problem, we aim to assign natural numbers to edges of a graph, so that adjacent edges receive different numbers, and the sum of the numbers assigned to the edges is minimum. The chromatic edge strength of a graph is the minimum number of colors required in a minimum sum edge coloring of this graph. We study the case of multicycles, defined as cycles with paralle...
متن کاملCost Total Colorings of Trees
A total coloring of a graph G is to color all vertices and edges of G so that no two adjacent or incident elements receive the same color. Let C be a set of colors, and let ω be a cost function which assigns to each color c in C a real number ω(c) as a cost of c. A total coloring f of G is called an optimal total coloring if the sum of costs ω( f (x)) of colors f (x) assigned to all vertices an...
متن کاملMinimum Cost Edge-Colorings of Trees Can Be Reduced to Matchings
Let C be a set of colors, and let ω(c) be an integer cost assigned to a color c in C. An edge-coloring of a graph G is to color all the edges of G so that any two adjacent edges are colored with different colors in C. The cost ω( f ) of an edge-coloring f of G is the sum of costs ω( f (e)) of colors f (e) assigned to all edges e in G. An edge-coloring f of G is optimal if ω( f ) is minimum amon...
متن کاملMaximum Performance at Minimum Cost in Network Synchronization
We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2010
ISSN: 0012-365X
DOI: 10.1016/j.disc.2009.03.038